

Top Quark Production at Tevatron

Hao Liu
(On behalf of the CDF and D0 Collaborations)

Outline

- Top Quark
 - Heaviest know particle, $m_{top} = 173.34 \pm 0.76 \text{ GeV}/c^2$;
 - No hadronization;
 - Almost 100% decaying into a W boson and a b quark.
- Pair Production (strong interaction)
 85%
- Single Production (electroweak interaction)

Top quark properties at Tevatron is covered by Gianluca Petrillo in Top 2 session

Pair Production Cross Section

8

——Tevatron Combination

- Both experiments contributes similarly (CDF 60%, D0 40%).
- All systematics and correlations between them are considered.
- Top quark mass assumed to be 172.5
 GeV
- Combination results published:
 - Phys. Rev. D 89, (2014) 072001

Pair Production Cross Section

——Tevatron Combination

Phys. Rev. Lett. 110, (2013) 252004

 Measured Cross section at 172.5 GeV

$$\sigma_{tt} = 7.60 \pm 0.41 \text{ pb}$$

Standard model prediction:

$$\sigma_{t\bar{t}} = 7.35^{+0.11}_{-0.21} (\text{scales})^{+0.17}_{-0.12} (\text{PDF})$$

 Within the measured mass range, the measured cross section is in good agreement with theory calculation.

Differential tt Cross Section

arxiv:1401.5785

- Final state is obtained by kinematic reconstruction.
- Cross section as a function of m_{tt} , $p_T(t)$, |y(t)|.
- Measured with typical precision ~ 9%.
- General agreement with predictions by QCD generators and NNLO.

Single Top Quark Production

Independently observed by CDF and D0 in 2009

Event Selection

- Lepton + Jets (both CDF and D0)
 - one lepton
 - large missing E_T
 - two or three jets
 - $\cdot \ge 1 b \text{ jet}$
- Missing E_T + Jets (only CDF)
 - large missing E_T
 - two or three jets
 - $\cdot \ge 1 b \text{ jet}$

Single Top Quark Measurements

Phys. Lett. B **726** (2013) 656 _____Lepton + jets

$$\sigma_s = 1.10^{+0.33}_{-0.31} \text{ pb}$$

- 2-jets and 3-jets events included
- 3 MVA techniques used
 - Boosted decision tree
 - Neural network
 - Matrix element
- Outputs from 3 MVAs are combined into one BNN.
- Final discriminant is sensitive to both s- and t-channel.
- Integrate over the 2D plot to calculate σ_{s+t}

s-channel Significance 3.7 σ

IV_{tb}I>0.92 @ 95% CL

s-channel Measurements

-two final states

arxiv:1402.0484 accepted by PRL

arxiv:1402.3756 accepted by PRL

lepton+jets & met+jets

- CDF full data set used
- Improved b-jet tagger used
- Top reconstruction algorithm optimized for s-channel
- Final discriminant is optimized for s-channel only
- lepton+jets
 - Only 2-jet events used

$$\sigma_s = 1.41^{+0.44}_{-0.42} \text{ pb}$$

- met+jets
 - Both 2-jet and 3-jet events used

$$\sigma_s = 1.12^{+0.61}_{-0.57} \text{ pb}$$

Combined Significance 4.2 o

Tevatron Combination

First s-channel observation

- Include two CDF schannel and one D0 measurements.
- Include all systematics and their correlations.

arxiv:1402.5126 Accepted by PRL

Tevatron Combination

$$\sigma_s = 1.29^{+0.26}_{-0.24} \text{ pb}$$

- Observed p-value: 1.8x10-10
- Observed significance: 6.3 σ

Conclusion

- Tevatron continues providing valuable top physics results.
- Differential cross section.
- Single top quark results is Tevatron legacy
 - Single top quark observation (2009)

t-channel observation (2011)

s-channel observation (2014)

- Future
 - σ_{s+t} Tevatron combination is underway.

Backup Slides

Systematics

Systematic uncertainty	CDF		D0		Corre-
	Norm	Dist	Norm	Dist	lated
Lumi from detector	4.5%		4.5%		No
Lumi from cross section	4.0%		4.0%		Yes
Signal modeling	2 - 10%	•	3 – 8%		Yes
Background (simulation)	2 - 12%	•	2 - 11%	•	Yes
Background (data)	1540%	•	19 – 50%	•	No
Detector modeling	2 - 10%	•	1 - 5%	•	No
b-jet-tagging	10 - 30%		1540%	•	No
JES	0 – 20%	•	9 – 40%	•	No

Top Quark Production Cross Section

Theory prediction

Cross section(pb)	tī	s-channel	<i>t</i> -channel	tW-channel
Tevatron(1.96 TeV)	7.08 x33	1.05 ×5.3	2.08 ×42	0.25 ×88
LHC(8 TeV)	234	5.55	87.2	22.2

- The unique opportunity of s-channel for Tevatron.
- Because of the difference between p-p and p-pbar collision, the relative signal-to-background ratio for schannel is higher at Tevatron than LHC.
- The production mode for $t\bar{t}$ is also different for Tevatron and LHC.

Single Top Quark Measurement ——Lepton + jets

- Up to 7.5 fb⁻¹
- SVX b-jet tagger used
- Four jet categories used
 - · 2J1T, 2J2T, 3J1T, 3J2T
- 1D neural network used for each jet category
- NN for 2J2T is optimized for s-channel, other NNs are optimized for t-channel.
- σ_{s+t} is extract by assuming SM ratio of σ_s/σ_t

Results

$$\sigma_{s+t} = 3.04^{+0.57}_{-0.53} \text{ pb}$$

$$\sigma_{s+t}^{SM} = 3.13 \text{ pb}$$

Single Top Quark Measurements ——Missing E_T + jets

- Both 2-jet and 3-jet events used.
- Final discriminants optimized for s- and t-channel separately
- σ_{s+t} is calculated by assuming SM ratio of σ_s/σ_t

· Results

$$\sigma_{s+t} = 3.53^{+1.25}_{-1.16} \text{ pb}$$
 $\sigma_{s+t}^{SM} = 3.13 \text{ pb}$

$$\sigma_s = 1.12^{+0.61}_{-0.57} \text{ pb}$$
 $\sigma_s^{SM} = 1.05 \text{ pb}$